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Abstract 
With in  linearised general  relativity the  energy loss o f  the  sp inning  rod  due  to its gravita- 
t ional  rad ia t ion  damp i ng  is calculated numerical ly  for arbi t rary rotat ional  speeds.  
C o m p a r i s o n  shows tha t  the  classical low-velocity approx ima t ion  is good  until  ro ta t ional  
speeds of  the ends  o f  the  rod  o f  abou t  �89 of  the  velocity o f  light. 

1. Introduction 
Recently in this Journal (Frehland, 1971, in the following cited as I) 

we have investigated the energy-momentum-stress-tensor and the (linear- 
ised) gravitational field of a spinning rod (dumbbell) without restriction 
upon the rod's angular velocity except that given by the velocity of light. 

In this papert we shall use the results of I in order to determine the 
energy loss of the rod (dumbbell) due to its gravitational self-interaction 
(radiation damping). 

The calculation of energy-radiation from mechanical mass systems by 
gravitational waves is a classical problem of general relativity, which was 
first examined by Einstein himself (1916, 1918) as an application of linear- 
ised theory. Hereafter in 1922, Eddington discussed the special case of a 
spinning rod. The basis of these works was Einstein's pseudotensorial 
energy-expression for the gravitational field, with the help of which the 
radiation flux through a closed surface, lying in the wave-zone, was deter- 
mined. This procedure yields, in the special case of the spinning rod and 
for low velocities, a radiated power P 

P=3--25 G. C~ (1.1) 
C s 

(0 = moment of inertia). 
For low velocities the results of the short-range field calculations in this 

paper yield agreement between the energy change and the radiated power 
"~ No ta t i ons  and  convent ions  as in I. 
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P, given by the approximate value (1.1). For high velocities the deviation 
from (1.1) is slight in the case of the homogeneous rod and more significant 
for the dumbbell. The high velocity results are determined numerically. 

2. Gravitational Self-Interaction of Systems in Nearly Periodic Motion 

Before calculating directly the energy change of the rod we will derive the 
relevant relations between the energy change and the radiation flux. For 
Einstein's energy-momentum-pseudotensor t.  ~ of the gravitational field 
hold the divergence relations 

[(T~ v + t~v)V'(-g)] iv = 0} 
g = det gu~ , (2.1) 

From these equations follow non-tensorial integral conservation laws. 
For closed and in lowest (zeroth)-order periodic systems (e.g. the spinning 
rod), we can simplify these conservation laws essentially by performing an 
additional time integration over one period T = t2 - ta and by restricting 
to the linear approximation. In this approximation the metric tensor guy 
and the pseudotensor t~ v are in De Donder coordinates periodical in T 
(cf. I (2.1.5)). Hence we get1" 

t 2  a 0 t :  1 0 

f dt f T.%dw=- f dt f t;"df,. (2.2) 
It 1 I 1 

0 

in which df,, is the two-dimensional surface element in the Minkowski 
space. For # = 4 the integral on the right-hand side is regarded as the 
energy radiated away by the system during one period and the left-hand 
integral as the change of the material energy (AE(T)). In the sense of this 
interpretation, as a consequence of the periodic motion of matter, (2.2) 
means the following" There are no tails and the energy radiated away from 
the system is equal to that lost by the source. 

In the following we shall discuss the left integral in (2.2) for/z = 4. From 
the covariant conservation laws 

Tu ~,,, = 0 (2.3) 

it is easy to deduce for this integral under application of Gauss' theorem 
and integration over the whole matter system the following relation 

0 i,  0 0 �9 

f T441,,dV=�89 J ?,~p,4T'~PdV=: E (2.4) 

(e.g. Einstein, 1918, Cooperstock, 1967). 
It is easy to see, that for the spinning rod, s is constant in time in linear 

approximation. Hence s describes the energy loss AE/T averaged over one 
period T. 

o 1 
I" A, A . . . .  denotes the zeroth, first ..... order of a quantity A. 
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3. Gravitational FieM o f  the Spinning Rod  
0 

In I we have determined the energy-momentum-stress-tensor T "v of  the 
spinning rod (length 2R) rotating in the x - y-plane about the z-axis 

/ [pcoZy 2 cr"~, . xy  ~'~ 
- -  po~ 2 xy  

0~176 
\ --pco)y pcogx 0 pc z 

wherein p = po/(1 -f12) is the mass density with reference to the inertial 
system at rest and Po the proper density of  matter (timelike eigenvalue of  
0 
T" 0 while 

R 

cr" = - po92 r12 drl (3.1a) 
r 

/. 

describes the (radial) stresses in the rod. 

z 

x 

Figure 1.--Model of the spinning rod. 

In order to avoid complication of the analysis we make the following 
simplifying assumptions for the mass distribution in the rod (see fig. 1): 

(a) p = 0 for r < Ri 
(b) p = const for R1 ~< r ~< R ] (3.2) 



446 E. FREHLAND AND E. NOWOTNY 

(3.1) contains the limiting cases homogenous rod (R~ -+ 0) and dumbbell 
(R~ -+ R).~ 

N o w  we calculate the linearised field ~o.  Analogously to I, where we have 
determined the field only in the special case of  the dumbbell, we evaluate the 
retarded integrals (I, (2.15)) as follows: We first determine the Li6nard- 
Wichert potential of  each single-mass element and then integrate over the 
rod. The result for the non-vanishing components ~o is: 

K r Ri Y d r  z 2 �9 2 , s l n o t ,  ~xx = - ~ p L  co (R R,~)(�89 

d R(r) 
RI 

[i' �9 dr .. 2[r)2 Yyy = - - ~ P L  ~V--tu Vn -- R12)(�89 -- COS2 cot~r)) 

R, R2  cos2 cot ~r) + R2 -- r2) + c2) ] f dr 2 2 . 2  , + a{--~(co (r sm cot( ,  - 

R1 

�9 dr 2 2 2 dr 2 W-CO (R - R ~  ) +  ~ - - ( 2 e  + c o 2 ( R 2 - 3 r 2 ) )  ~= =--8--~PL 
d!  ~'(r) R1 

/C r Rt 
?" dr 2 2 ' " ' 

LO 

+ T (  dr , , (0 2 R 2 COS cot(r ) sin COt (r) 
J R(~) 

R1 

R~ 

7 x 4 = - - ~ p L C f  dr . . . .  cor(~sln cot (~)) 

R1 
R. 

( dr 
~'~,4 = + ~ pL c j R(,)~ cot (• cot o)) 

R1 

[ ( ' d r c o  2 R;dr .2  
~,44 = - ~ p L / j  ~ -  (R2-R12) + ~(~)l,c +3r2- �89 (3.3) 

LO R 1 

"~ Of course this is only one possible definition for the h o m o g e n e o u s  rod. 
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PL = (constant) line density between R, and R, t ' =  t -  ?'/e, ~ ' =  ~(t'), 
~' = _R(t'), ~ = ~ -> (co/e)r(xsincot - ycoscot). 

:k for (source) points on the right/left side of  the rod ((r) denotes a point 
of the rod; * means that integration over the left and right side of the rod 
is to be taken separately because of the retardation). 

4. Calculation of  the Energy-Loss 

The computation of the constant value /~ according to (2.4) gets a 
considerable simplification, if we calculate it for the time t = 0, when the 
rod is lying in the x-axis. Then it follows from (2.4) and (3.1): 

r 0 1 0 t' 0 1 
= ½ J dV(~o  14 T~P)(x,o ,0,0) = ½ J dV(-]xx  14 °'rr 

1 1 1 
q_ ]~yyl4 po)2  x 2 q_ 2yy414pco.) X _}_ 2 g441~, P e }(x,o,o,o) (4.1) 

We evaluate (4.1) with the help of (3.1 a) and (3.3). 

(A) Low Velocity Approximation: 

Firstly for low velocities we expand the integrand in (4.1) into powers 
of a~ till the lowest non-vanishing order. A lengthy but elementary calcula- 
tion yields: 

1 1 
Vxxl4(x, 0, 0, 0) = -V~yl4(X, 0, 0, 0) = 4 tcpL .4rDz R B) (4.2a) 

1 8 KpL s¢,~3 , -  a-~ 
Yy414(x, 0, 0, 0) = ~ c a  a~ ~ - r , ,  ~ (4.2b) 

1 8 _~4L o96(R3 _ R 1 3 )  x 2  (4.2c) 74414(x,0,0,0)- 451tc 

If  we substitute ~: by Newton's gravitational constant G and use, that 
0 = ~pL(R 3 -- R ,  3) is the moment of inertia of the rod, we get from (4.1) 
with (4.2) and (3.3): 

32 Gco 6 
/~ 5 e 5 02 (4.2) 

This result is in fact in agreement with the radiated power P calculated by 
Einstein and Eddington (see (1.1)). 

(B) Arbitrary Rotational Speed 

We have calculated numerically the integral (4.1) for various a~R/e and 
R, /R  (see Fig. 1) and constant moment of inertia 0. The results are listed 
in Table 1 and drawn in Fig. 2. 

Comparison shows that the low-velocity approximation is good until 
rotational velocities ~oR/c of the ends of the rod of about ½. For 
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TABLE 1 

1 
GcO 2 

c0R Low velocity R1 0 R1 15 R1 23 Rx 31 
c approximation R R 32 R 32 R 32 

0.1 0.16" 10 -s 0.16' 10 -s 0.16" 10 -5 0.16" 10 -s 0.16" 10 -s 

0.2 0.10" 10 -a 0.10" 10 -a 0.10" 10 -3 0.10" 10 -a 0.10" 10 -3 

0.3 0.12-10 -2 0.11"10 -2 0.11"10 -2 0.11.10 -2 0.11"10 -2 

0.4 0.07" 10 -1 0.06.10 -1 0.06' 10 -1 0.06.10 -1 0.06.10 - t  

0.5 0.25.10 -1 0.23.10 -1 0.23.10 -1 0.23.10 -1 0.23.10 -1 

0.6 0.07 0.07 0.07 0.07 0.07 

0.7 0.19 0.17 0.18 0.18 0.19 

0.8 0.42 0.40 0.41 0.44 0.05" 10 

0.9 0.09.10 0.09" 10 0.09" 10 0.10.10 0.16.10 

0.999 0.16.10 0.20" 10 0.22" 10 0.30" 10 0.22" 102 

(e) 
R=I / 
(a) Low velocity approximation 

, , R~ 15 

~ R~_23 

" ~  R1 31 l ~ -  = - (a) 

0.6 0.7 0.8 0.9 1.0 

~R 
C 

Table 1 and Figure 2.--The energy loss E as a function of the rotational velocity ogR/c 
of the ends of the rod for different values of the inner radius R1 compared with the low 
velocity approximation (a). 
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o~R[c -+  1 the  devia t ions  are slight in the  case R~ = 0 (rod)  and become 
more  significant for  Rx/R -+  1 (dumbbel l ) .  
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